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The properties of the phonon-induced interaction between electrons are studied using the local-density
approximation �LDA�. Restricting the electron momenta to the Fermi surface we find generally that this
interaction has a pronounced peak for large momentum transfers and that the interband contributions between
bonding and antibonding band are of the same magnitude as the intraband ones. Results are given for various
symmetry averages of this interaction over the Fermi surface. In particular, we find that the dimensionless
coupling constant in the d-wave channel �d, relevant for superconductivity, is only 0.022, i.e., even about 10
times smaller than the small value of the s-wave channel. Similarly, the LDA contribution to the resistivity is
about a factor 10 times smaller than the observed resistivity suggesting that phonons are not the important
low-energy excitations in high-Tc oxides.
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I. INTRODUCTION

The relevance of phonons for the low-energy properties of
high-Tc oxides is presently rather controversially discussed.
Some experiments suggest that the charge carriers near the
Fermi surface interact only weakly with phonons. Examples
are the magnitude and temperature dependence of the
resistivity1 and the rather small effects in the phonon spec-
trum caused in general by superconductivity near or below
the transition temperature Tc.

2 For instance, the
superconductivity-induced softening and width of the zone-
center buckling mode in YBa2Cu3O7 corresponds to a rather
small electron-phonon �ep� coupling constant.3 The recently
measured isotope dependence of angle-resolved photoemis-
sion spectra �ARPES� �Ref. 4� do not indicate any isotope
dependence of the total electronic bandwidth for binding en-
ergies down to 200 meV. This shows the inapplicability of a
simple polaron picture, caused by a strong ep interaction, to
cuprates because the associated band narrowing would be
sensitive to different isotopes.5

On the other hand, there exist many observations which
have been taken as evidence for a substantial ep interaction
in the cuprates. The measured isotope effects on the transi-
tion temperature6 and the superfluid density,7 especially in
underdoped samples, are two examples. Another example is
the large width and softening observed in bond-stretching
phonons in hole-doped cuprates in a very small region in k
space.8 Similarly, the absence of a quasiparticle peak in
strongly underdoped Ca2−xNaxCuO2Cl2 �Ref. 9� as well as
the doping dependence of a magnetic transition in the
frequency-dependent conductivity were attributed to
phonons.10,11 Finally, electronic self-energy effects in the
phonon energy region have been observed by ARPES �Ref.
12� and by scanning tunneling microscopy13 and interpreted
in terms of a coupling of electrons to a bosonic mode.
Whether this mode is related to phonons is presently unclear
but if this is the case, the ep coupling and phonons would
certainly be important for the low-energy physics of cu-
prates.

Unfortunately, there exist for virtually every interpretation
of experiments in favor or disfavor of phonons alternative

explanations. For instance, the large isotope effects on Tc
observed in the underdoped region do not indicate necessar-
ily a large ep coupling but may be caused by the
pseudogap.14 Similarly, the bosons which interact with elec-
trons near the Fermi surface in the interpretation of ARPES
data may be not phonons but, for instance, spin
fluctuations.15–17 In view of these uncertainties it seems use-
ful to investigate the properties of the ep coupling indepen-
dently from any interpretation of experiments, i.e., from first
principles using the local-density approximation �LDA�. To
this end we extend recent investigations on phonon-induced
electronic self-energy effects18,19 and study the momentum,
frequency dependence, and magnitude of the phonon-
induced interaction between electrons in detail. Though our
approach is based on the LDA and deals only with the stoi-
chiometric case it takes many features of these systems such
as the complicated phonon spectrum and screening proper-
ties self-consistently and realistically into account.

II. COMPUTATION OF THE PHONON-INDUCED
INTERACTION

The retarded, phonon-induced electron-electron interac-
tion, multiplied by −1 for convenience, is given in momen-
tum space by20

V�k�,k + q�,�� = �
j

�gj�k�,k + q���2
�qj

�qj
2 − �� + i��2 .

�1�

gj�k� ,k+q�� denotes the renormalized amplitude for a tran-
sition from the electronic state with momentum k and band
index � to the state with momentum k+q and band index �
creating �annihilating� a phonon with branch label j and mo-
mentum q�−q�. �qj denote the phonon frequencies and � a
positive infinitesimal. The amplitudes gj are obtained within
the LDA with the efficient linear-response technique.21,22 We
used a 36�36�4 mesh for the electronic momentum k
within the Brillouin zone of YBa2Cu3O7 while phonon fre-
quencies and the self-consistent electron-phonon potential
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were calculated for transferred momenta q on a coarser 12
�12�4 mesh. Because even for this reduced mesh an exact
calculation was numerically very demanding, we adopted a
two-step procedure. First, phonon-related quantities were
calculated exactly by linear response on a 4�4�2 mesh.
Details can be found in Refs. 23 and 18. These quantities
were then approximated on the 12�12�4 mesh by a
Fourier-interpolation technique.

Under the usual assumptions it is sufficient to restrict the
electronic momenta k and k+q in V to the Fermi surface.
Our momentum meshes allow to put k practically right on
the Fermi surface whereas k+q was chosen as near as pos-
sible to the Fermi surface. Fermi-surface averages were cal-
culated including also a Gaussian for the one-particle ener-
gies with width �. The Fermi surface in YBa2Cu3O7 consists
essentially of three bands � ,�=A ,B ,C where A, B, and C
denote the antibonding, bonding, and chain band, respec-
tively.

III. RESULTS

A. Momentum dependence

The upper panels of Fig. 1 show the intraband contribu-
tion �=�=B to the static interaction V�k� ,k�� ,0�. We used
kz=0.125 and qz=0, i.e., all electronic momenta are re-
stricted to the plane kz=0.125. The left part in this figure
refers to a fixed momentum k at the nodal, the right part at
the antinodal Fermi point. Symbols indicate electronic states
whose energies differ from the Fermi energy by less than a
certain threshold energy. The large filled circles refer to 0.1
eV, the small filled circles to 0.2 eV, and the open circles to
0.3 eV. Lines approximate the Fermi surface and are ob-
tained by a linear interpolation between neighboring mesh

points. The position in k space of the mesh points corre-
sponding to the different circles is shown in the insets to-
gether with the Fermi line depicted by a solid line. V is
presented as a function of the angle 	 at S= �
 ,
� between
the vectors �kx�−
 ,ky�−
� and �−
 ,0�. Varying 	 between 0
and 2
 means that k�, seen from the point S, moves around
the Fermi surface in the anticlockwise sense starting from the
antinodal point ��0,
�. The angle 	 is illustrated in the left
inset. It is rather straightforward to construct a continuous
curve for V from the discrete points discarding only a very
few points which correspond to momenta k� rather far away
from the Fermi surface and thus should be omitted.

The right potential curve in Fig. 1 should be symmetric
with respect to 	=
 due to the orthorhombic symmetry
which is roughly fulfilled for our discrete mesh. If tetragonal
symmetry would apply the left potential curve should be
symmetric with respect to 	=5
 /4 which holds approxi-
mately. Finally, if V depends only on the transferred momen-
tum q, the left potential curve, shifted rigidly by the angle
	=−
 /4, would coincide with the right potential curve. This
is qualitatively the case, for instance, the two dominating
maxima are close to each other after such a shift. Quantita-
tively there are, however, differences, for instance, the
heights of the maxima differ by about 30% and the �small�
values at zero-momentum transfer by about a factor 3 after
the shift. Remarkable is the large variation in V by about a
factor of 5 between small and large momentum transfers, i.e.,
between 	=0 and 
 in the case of the right potential curve.
Interesting for the relation between state- and transport-
relaxation times is that V is larger for large than for small
momentum transfers.

The lower panels in Fig. 1 show potential curves for in-
terband scattering between the antibonding and bonding
band. The curves are rather similar to those of the corre-
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FIG. 1. Phonon-induced inter-
action V�kB ,k�B ,0� �upper part�
and V�kA ,k�B ,0� �lower part� for
a fixed momentum k at the nodal
�left diagram� and antinodal �right
diagram� Fermi point as a func-
tion of k�, encircling the Fermi
surface around the point S
= �
 ,
� in anticlock direction,
starting from the antinodal point
�see upper left inset�. Insets show
the considered mesh points near
the Fermi surface described by the
solid line.
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sponding upper panels in this figure. The only qualitative
difference occurs for 	�0 in the right-hand panel where a
pronounced forward-scattering peak at the point Y emerges.

The upper and lower parts of Fig. 2 show potential curves
in the same way as in Fig. 1 but for the �=�=A and
�=B ,�=A contributions, respectively. The intraband poten-
tial of the antibonding band looks similar as for the bonding
band if k is at the antinodal Fermi point but very different if
k is at the nodal point. In the latter case it is practically
independent of 	 and rather small. This means that V de-
pends in this case strongly on k and not only on the trans-
ferred momentum q which may reflect the strong interaction
with the chain band. The interband contribution between the
bonding and antibonding band, shown in the lower part of
Fig. 2, looks qualitatively similar as the interband term be-
tween the antibonding and the bonding band of Fig. 1 exhib-
iting well-pronounced maxima at large momentum transfers.
At small momentum transfers electrons near the nodal direc-
tion interact only weakly whereas those in the antinodal di-
rection develop a second and rather sharp peak in V at
	=0 which, to a lesser degree, was also present in the intra-
band contribution of the antibonding band. The absolute
magnitude of V is in all considered cases similar which
means that interband and intraband terms are comparable in
magnitude.

Figure 3 shows potential curves for interband scattering
between the band A and B, respectively, and the chain band
C. Due to the geometry of the chain band the angle 	 is
restricted to some region around 
 /2 and 3
 /2. The poten-
tials peak in general around these to values but the absolute
values are rather small compared, for instance, to those in
Fig. 1.

B. Frequency dependence and magnitude
of coupling constants

The dimensionless coupling function ���k� �Ref. 20� can
be written in terms of V as

���k� = 2 �
k�,�

V�k�,k��,0����k��� . �2�

Figure 4 shows ���k� for �=A �red squares joined by straight
lines�, �=B �black circles�, and �=C �blue triangles� for
�=0.2 eV as a function of the angle 	. Using kz=0.125 and
kz=0.375 yields two curves denoted by filled and empty
symbols, respectively, which are close to each other illustrat-
ing the weak dependence of ��k� on kz. Both for the bonding
and antibonding bands ��k� is approximately symmetric
with respect to 	=
 /4 reflecting the tetragonal symmetry of
isolated layers. Moreover, the coupling functions are smaller
along the nodal direction by about 20–30 % compared to the
antinodal direction which characterizes the anisotropy of
��k� in the layers. The Fermi surface of the chain band starts
in our plot only somewhat below the nodal direction and
yields a rather strong and rapidly varying coupling function
�C�k� reflecting the strong perturbation of tetragonal symme-
try by the chains.

Dimensionless coupling constants ��
	 with

	=s ,s� ,d , px , py can be defined by

��
	 =

2

N�
	�0� �

k,k�,�

V�k�,k��,0��	�k��	�k�����k�����k���

�3�

with the weight functions �s=1, �s�=cos kx+cos ky,
�d=cos kx−cos ky, �px

=sin kx, and �py
=sin ky.
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FIG. 2. Phonon-induced inter-
action V�kA ,k�A ,0� �upper part�
and V�kB ,k�A ,0� �lower part� for
a fixed momentum k at the nodal
�left diagrams� and antinodal
�right diagrams� Fermi point as a
function of k�, encircling the
Fermi surface similar as in Fig. 1.
Insets show the considered mesh
points near the Fermi surface de-
scribed by the solid lines.
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N�
	�0�=�k�	

2�k����k�� denotes the partial density of band �
in the symmetry channel 	. The second, third, and fourth
columns in Table I show the calculated values for ��

	 where
we approximated the � functions in Eq. �3� by Gaussians
with width �=0.2 eV. The fifth column contains �	, the sum
of the three band contributions each weighted with the factor
N�

	�0� /N	�0� where N	�0� is the total density of electronic
states at the Fermi surface in the channel 	. These partial
density factors enter the total coupling constant relevant for
superconductivity.

The numbers in the columns 2–4 of Table I show that the
coupling constants for the three bands are similar in magni-
tude for each symmetry component. The isotropic s-wave
component is in all cases substantially larger than those for
the remaining “nontrivial” symmetries. According to Eq. �2�
���k� and thus also the above coupling constants contain
both intraband ��=�� and interband ����� contributions.
Keeping only the intraband parts diminishes substantially the

numbers in the table. For instance, for the isotropic s-wave
channel �first line� the numbers for A, B, and C change to
0.090, 0.069, and 0.074, respectively. This means that inter-
band transitions contribute much more to the coupling func-
tions than the intraband transitions. Considering �=0.1 eV
instead of 0.2 eV does not change much our results: for
instance, the first three numbers in the first line become
0.226, 0.229, and 0.230, respectively. This suggests that our
momentum nets are adequate for calculating average quanti-
ties such as ��

	.
The most interesting numbers in the table are those in the

last column which determine the phonon contribution to su-
perconductivity. Isotropic s-wave dominates by far but this
component is ineffective because of the strong Coulomb re-
pulsion. In all other symmetry channels � is very small. This
holds in particular for the d-wave channel where it is only
0.022, i.e., one order of magnitude smaller than the isotropic
s-wave value. This value is rather stable with respect to �.
For instance, it changes from 0.022 to 0.027 if �=0.2 eV is
reduced to �=0.1 eV. Keeping only intraband contributions
one obtains 0.021, i.e., the interband transitions are negli-
gible in this case.

Using the Kramers-Kronig transformation for V in Eq. �3�
��

	 can be written as an integral from zero to infinity over a

TABLE I. Weighted coupling constants.

�A
	 �B

	 �C
	 �	

s 0.234 0.238 0.270 0.246

s� 0.093 0.075 0.079 0.084

d 0.011 0.034 0.032 0.022

px −0.020 −0.042 −0.022 −0.028

py −0.027 −0.047 −0.051 −0.037

0 π/4 π/2
α

0.2
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λ(
k)

FIG. 4. �Color online� Coupling functions �A�k� �red squares
joined by straight lines�, �B�k� �black circles�, and �C�k� �blue tri-
angles� for kz=0.125 �filled symbols� and kz=0.375 �empty sym-
bols�. Angle 	 is the same as in Figs. 1–3.
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FIG. 3. Phonon-induced inter-
action V�kB ,k�C ,0� �upper part�
and V�kA ,k�C ,0� �lower part� for
a fixed momentum k at the nodal
�left diagrams� and antinodal
�right diagrams� Fermi point as a
function of k�, encircling the
Fermi surface similar as in Fig. 1.
Insets show the considered mesh
points near the Fermi surface de-
scribed by the solid lines.
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frequency-dependent coupling function ��
	���. The same

holds for the total functions �	 and �	���. Figure 5 shows
�s��� �black dashed line� and �d��� �red solid line�, using a
width of 1 meV for the phonons. In the case of �s��� the
phonons give only positive contributions to �s which are
spread out over the whole range of phonon frequencies. The
spectrum is rather peaky because of the usual occurrence of
density peaks. Nevertheless, it is clear that it is not possible
to attribute the spectrum to a few distinguished phonons such
as the breathing or buckling modes or bond-stretching
modes. In the case of �d��� phonons give both positive and
negative contributions to the spectrum which lead to large
cancellations in the integral for �d and thus to a small value
for �d. Such cancellations would be trivial in the case of a
momentum-independent V where they would occur for each
phonon frequency separately. In our case V depends substan-
tially on its two momenta, yet, there are large cancellations,
especially between phonons with different frequencies. A
somewhat curious point is that the high-frequency part of
�d��� is dominated by two peaks at around 40 and 65 meV
corresponding roughly to the buckling and breathing phonon
frequencies, respectively. However, these peaks have differ-

ent signs and thus cancel each other to a large extent in �d.
We note that the positive peak in �d��� at 27 meV is related
to an oxygen buckling-type vibration with odd symmetry
with respect to the CuO2 bilayer.

In Fig. 6 we show a comparison between the frequency
dependence of the total coupling functions with s and s�
�upper panel� and with px and py �lower panel� symmetries.
As expected the s-wave coupling function is much larger
throughout the whole frequency interval compared to the
other symmetries. Remarkable is that the couplings with px
and py symmetries are mainly negative over the whole fre-
quency region and that they differ from each other reflecting
the presence of the chain band and the broken tetragonal
symmetry.

C. Resistivity

The resistivity in i direction is determined by the transport
coupling constant �i

tr given by20

�i
tr = 2 �

k,k�,�,�

V�k�,k��,0����k�����k���

��vi
2�k�� − vi�k��vi�k����/�vi

2	 , �4�

where �vi
2	 denotes the average of vi

2�k�� over all pieces of
the Fermi surface. Our calculation yields �x

tr=0.256,
�y

tr=0.272, and �z
tr=0.228. These values are close to �s illus-

trating the fact that the pronounced momentum dependence
of V in Figs. 1–3 not necessarily reflects itself in the above
coupling constants. Generalizing V in Eq. �4� to a finite fre-
quency and taking the imaginary part the right-hand side of
this equation is proportional to the function 	tr

2 F��� from
which the temperature dependence of the resistivity can be
calculated using Eqs. �4� and �7� of Ref. 24. The results are
shown in Fig. 7.

With increasing temperature the curves reach between
120–150 K a quasilinear regime which approaches in a very
smooth way the true linear region above the highest phonon
frequency at around 1000 K �not shown in Fig. 7�. A typical
experimental value is x�300 K�=290·10−6 Ohm cm1, i.e.,
only about 10% of the experimental scattering is due to
phonons. Also the noticeable deviations from a linear law
between Tc=90 K and about 150 K in the theoretical curves
seem to be in conflict with the experiment for optimally
doped samples.
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FIG. 6. �Color online� Upper panel: coupling functions �s���
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frequency using a width of 1 meV for the phonon modes. Lower
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IV. DISCUSSION

Our approach treats electronic correlations only in an ap-
proximate way and its applicability to real YBa2Cu3O7 may
be questioned. Unfortunately, the calculation of corrections
to our results due to strong electronic correlations is difficult
and presently not very reliable. However, it seems very im-
probable that our main results, namely that �d and �tr are
about a factor 50 and 10 too small to account for Tc and ,
respectively, will be substantially changed by correlations.
Experimental data on the width of some phonons are inter-
esting in this respect. The anomalous broadening of the
buckling phonon at the zone center has been quantitatively
explained with LDA results for the ep interaction, once a
large anharmonic contribution was subtracted.3 On the other
hand, bond-stretching phonons at low temperatures show
anomalies around the wave vector �0,0.25,0� in form of a

sharp and localized softening and large widths2 which clearly
are beyond the LDA.25 At higher temperatures, where these
anomalies are not present, the measured widths are still siz-
able. Assuming that these widths are entirely due to the ep
interaction our LDA calculation could only account for about
20% of these widths. However, part of the widths could also
be caused by anharmonicity like in Ref. 3. Furthermore, it is
not clear how much these rather localized anomalies in k
space contribute to Fermi-surface-averaged quantities such
as �tr. A large increase in �tr due to correlation-enhanced
coupling to bond-stretching phonons could account for the
missing scattering contribution found in the LDA calculation
of . On the other hand, its temperature dependence would
be in conflict with the observed linear temperature between
Tc and room temperature because the onset of the linear de-
pendence in Fig. 7 would be shifted to higher temperatures
due to the high frequency of bond-stretching phonons.
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